Muon g-2/EDM Measurement at J-PARC

Takashi Yamanaka (Kyushu University, RCAPP) on behalf of the J-PARC E34 Collaboration

10th International Workshop on Fundamental Physics Using Atoms
January 8, 2018
Muon g-2 and EDM

- Anomalous magnetic moment
 \[a_\mu = \frac{g - 2}{2} \]
 - Calculated at the order of 0.4 ppm precision in the SM for muon
 - The best experimental uncertainty is 0.54 ppm by BNL E821.
 - There is ~3 \(\sigma \) deviation between the theory and the experiment.
 - New physics (e.g. SUSY) can explain this discrepancy.

- Electric dipole moment (EDM)
 - If non-zero EDM exists, it indicates CP violation.
 - Current experimental limit is at \(<10^{-19} \text{ e\cdot cm}\) by BNL E821.
 - The SM expectation of muon EDM is \(~2 \times 10^{-38} \text{ e\cdot cm}\).
 - New physics (e.g. SUSY) predict much larger EDM.
Muon Spin Precession Vector

- The g-2 and EDM are obtained by measuring spin precession vector
 \[
 \vec{\omega} = -\frac{e}{m} \left[a_\mu \vec{B} - \left(a_\mu - \frac{1}{\gamma^2 - 1} \right) \vec{\beta} \times \vec{E} \right] + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} + \frac{\vec{E}}{c} \right)
 \]

- In the previous experiments by CERN and BNL and ongoing experiment by FNAL \to magic momentum: $p=3.094$ GeV/c
 \[
 \vec{\omega} = -\frac{e}{m} \left[a_\mu \vec{B} - \left(a_\mu - \frac{1}{\gamma^2 - 1} \right) \vec{\beta} \times \vec{E} \right] + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} + \frac{\vec{E}}{c} \right)
 \]

- In J-PARC E34 experiment \to $E=0$
 \[
 \vec{\omega} = -\frac{e}{m} \left[a_\mu \vec{B} + \frac{\eta}{2} \vec{\beta} \times \vec{B} \right]
 \]
J-PARC Experiment Overview

Δ(μ) ≈ 0.1 ppm
EDM ≈ 10^{-21} e·cm

Features:
• Super-low emittance muon beam
• No strong focusing
• Compact storage ring
• Full tracking detector
• Completely different from BNL/FNAL method

3 GeV proton beam
(333 uA)

Production target
(20 mm)

Surface muon beam
(28 MeV/c)

Muonium production
(300 K ~ 25 meV ⇒ 2.3 keV/c)

Super precision storage magnet
(3 T, ~1 ppm local precision)

Silicon Tracker

Δ(μ) ≈ 0.1 ppm
EDM ≈ 10^{-21} e·cm

Features:
• Super-low emittance muon beam
• No strong focusing
• Compact storage ring
• Full tracking detector
• Completely different from BNL/FNAL method
J-PARC Facility

- LINAC 400 MeV
- Rapid Cycle Synchrotron 3 GeV
- Neutrino Beam to Kamioka
- Main Ring 30 GeV
- Hadron Hall
- Material and Life Science Facility
For high intensity beam and long beam time, a dedicated beam line will be constructed.
H-line Construction Status

- Frontend devices and radiation shield were already installed by JFY2016.
- Construction of the new power sub-station for H-line has been started.
 - Bedding of the station and renovation of MLF wall were done.
Muon Source

- Muonium yield was measured for various aerogel samples and long term stability was tested in beam test at TRIUMF in 2017.
- Laser system is constructed in U-line and achieved 10 μJ.
 - Development for >100 μJ is ongoing.
• Basic design for all structures was finished.

• Next goal was demonstration of muon acceleration.
 – Electro-static acceleration was already demonstrated.
 – Test of muon acceleration using RFQ has been performed.
Muon Acceleration Beam Test

μ⁺ (~4 MeV)

Oct. 24-30@J-PARC MLF D2

Mu production

RFQ

5.6 keV

90 keV

Diagnostic line (Quadrupole pair and bending)

Detector
The first muon (Mu⁻) RF linear acceleration in the world!

- Paper draft is in preparation.
Spiral Injection

• Accelerated muon beam is injected to storage region vertically using spiral injection.
 – High injection efficiency > 80%

• Spiral injection is being tested using electron beam.

CCD image of electron beam trajectory
Storage Magnet

- 3 T MRI-type solenoid magnet will be used.
 - Weak focusing magnetic field is also applied to keep beam size.
 - Several designs are made and their performances are being evaluated in simulation.
- Field uniformity is achieved by shimming.
 - Local uniformity of 1 ppm is confirmed with the magnet used in MuSEUM experiment.
 - NMR probe will be used for field measured. The probe was cross-calibrated at ANL.

Magnetic field after shimming
Positron Tracking Detector

- Tracking detector consists of 48 vanes and each vane has 8+8 silicon strip sensors.
 - Detail of structure design is on-going as well as construction procedures.
- Track reconstruction algorithm is being developed.
 - With the current version of algorithm, more than 90% efficiency is expected even in the highest pileup condition.
Detector Module

- The detector module consisting of one silicon strip sensor and prototype of readout ASIC was already put into MuSEUM experiment and recorded physics data.
 - The next version of detector module will be more close to the final version and will be put into the beam time of MuSEUM experiment in autumn of this year.

Silicon strip sensor
- Mass production has been started.

Specification
- 98.77×98.77 mm
- 190 μm pitch
- 512ch \times 2 block

Readout boards
- Final prototype readout-ASIC is being fabricated.

Specification
- 4 MIP range
- 839 e$^{-}$ ENC
- 128 ch/chip
- 8096 buffer
- 5 ns sampling
Measurement of a_μ

- a_μ is calculated from
 $$a_\mu = \frac{R}{\lambda - R}$$

 $\lambda = \mu_\mu / \mu_p$
 Muon/proton magnetic moment ratio
 - will be measured in MuSEUM experiment in 0.01 ppm

 $R = \omega_a / \omega_p$
 Muon anomalous spin precession frequency/Larmor frequency of proton
 - will be measured in this experiment
 - Several error sources are not yet fully evaluated but they are expected to be constrained less than 0.1 ppm on a_μ.

Systematic uncertainties on ω_a

<table>
<thead>
<tr>
<th>Source of errors</th>
<th>Error on ω_a [ppb]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timing shift due to pileup</td>
<td>< 36</td>
</tr>
<tr>
<td>Pitch correction</td>
<td>13</td>
</tr>
<tr>
<td>E-field</td>
<td>10</td>
</tr>
<tr>
<td>High energy positron</td>
<td>TBD</td>
</tr>
</tbody>
</table>

Systematic uncertainties on ω_p

<table>
<thead>
<tr>
<th>Source of errors</th>
<th>Estimation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absolute calibration standard probe</td>
<td>25 ppb</td>
</tr>
<tr>
<td>Calibration of trolley probe</td>
<td>20 ppb</td>
</tr>
<tr>
<td>Total magnetic field $B_{tot} = B_{main} + B_{weak}$</td>
<td>45 ppb +TBD</td>
</tr>
<tr>
<td>Uncertainty from the muon distribution</td>
<td>TBD</td>
</tr>
<tr>
<td>Field decay</td>
<td>< 10 ppb</td>
</tr>
<tr>
<td>Eddy current from kicker</td>
<td>0.1 ppb</td>
</tr>
<tr>
<td>Others</td>
<td>—</td>
</tr>
</tbody>
</table>
Measurement of EDM

- EDM is obtained by fitting up-down asymmetry of the number of positrons.
 \[A_{UD} = \frac{N_{up} - N_{down}}{N_{up} + N_{down}} = \frac{A_{EDM} \sin(\omega t + \phi)}{1 + A \cos(\omega t + \phi)} \]

- Dominant systematic uncertainty comes from detector misalignment.
 - Skew is the most demanding alignment and <10 µrad is required for EDM < 10^{-21} e\cdot cm.
 - Detector alignment will be performed with laser interferometer system and positron tracks.

Systematic uncertainties on EDM

<table>
<thead>
<tr>
<th>Uncertainty source</th>
<th>EDM 10^{-21} [e\cdot cm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detector misalignment</td>
<td>0.36</td>
</tr>
<tr>
<td>Axial E field</td>
<td>0.001</td>
</tr>
<tr>
<td>Radial B field</td>
<td>0.000001</td>
</tr>
<tr>
<td>Total</td>
<td>0.36</td>
</tr>
</tbody>
</table>
• Revised version of technical design report has been submitted to review committee on December 15, 2017.
 – Updated to reply Focused Review Committee’s recommendations
• J-PARC PAC meeting will be held on January 15-17, 2018 and E34 experiment will receive the review.
E34 Collaboration

- Authors has been increased from 144 to 158 in the last year.
- Group structure is organized.
Summary

• In J-PARC E34 experiment, measurement of muon g-2 and EDM are planned with a different method from the previous experiments.

• Developments of each component of the experiment are ongoing and there are several achievements in the last year.

• To proceed to the next approval stage, the collaboration will receive the review soon.