Optical atomic clock as a detector for topological defect dark matter

Piotr Morzyński
Nicolaus Copernicus University, Toruń, Poland
National Institute of Information and Communications Technology, Koganei, Tokyo
JSPS fellow
Dark matter in the form of topological defects

A. Vilenkin, Physics Reports 121, 263 (1985)

\[
\alpha_{\text{eff}} \approx \alpha \times \left(1 + \frac{\phi(x, t)^k}{\Lambda_{k, \gamma}^k}\right)
\]

\[
\frac{d\omega_0}{\omega_0} = K_\alpha \frac{d\alpha}{\alpha}
\]

\[
\frac{\delta \alpha}{\alpha} = \frac{\phi_{\text{inside}}^2}{\Lambda_{\alpha}^2}
\]

A. Pustelny et al., Ann Phys (Berlin) 525, 659 (2013)
Optical atomic clock

The most precise measuring tool

State-of-the-art clocks

relative uncertainty 10^{-18}
Optical atomic clock

\[\omega_0^{at} \propto E \]

\[\omega_0^{cav} \propto L^{-1} \]
Optical atomic clock

... is sensitive to α variation

$$\omega_0^{at} \propto E \propto \alpha^2$$

$$\omega_0^{cav} \propto L^{-1} \propto \alpha$$

\[\left(-\frac{1}{2} \sum_{i=1}^{n} \nabla^2 x_i - \sum_{i,j=1}^{n,m} \frac{Z_j}{r_{ji}} + \frac{1}{2} \sum_{i,k=1}^{n,n} \frac{1}{r_{ik}}\right) \psi = \epsilon \psi\]

\[\chi = \frac{r_i}{a_0}\]

\[a_0 = \frac{\hbar}{m \alpha c}\]

\[E_h = \alpha^2 m_e c^2\]

\[\varepsilon = \frac{E}{E_h}\]

P. Wcislo et al., Nat. Astron. 1, 0009 (2016)

Two linked clocks

Different sensitivity

Different location

Readout

Frequency shifter

Frequency shifter
MJD correction [Hz]
58001.000001 110834135
58001.000002 110834132
58001.000003 110834126
58001.000004 110834134
...

Piotr Morzynski, Nagoya 9.01.2018
Network of clocks

\[
\frac{\delta \alpha}{\alpha} < \frac{1}{K_\alpha \omega_0} \sqrt{\frac{A_0}{\eta^2}}
\]

\[
\Lambda_\alpha > d^{1/2} \sqrt{\frac{\eta^2}{A_0} \rho_{TM} \hbar c K_\alpha \mathcal{T} v \omega_0}
\]

Information about \(\delta \alpha\) and other common noises

P. Wcislo et al., Nat. Astron. 1, 0009 (2016)
Short events

From simulations ...

![Signal to noise ratio vs. TDM event duration graph](image)

Long events

![Frequency shifter 1 vs. time graph](image)
Experimental constraint

Two optical atomic clocks with neutral ^{88}Sr atoms trapped in optical lattices

P. Morzyński, Scientific Reports 5, 17495 (2015)
M. Bober et. al., Measurement Science and Technology 26, 075201 (2015)
Summary

- New method for searching for transient α variation
- Simplicity and workability
- Measuring apparatus already exists
- Results
Thank You for your attention!

Wethank Victor Flambaum and Yevgeny Stadnik for their crucial remarks.

Support has been received from the project EMPIR 15SIB03 OC18. This project has received founding from the EMPIR programme co-financed by the Participating States and from the European Union's Horizon 2020 research and innovation programme.

JSPS Postdoctoral Fellowship for Overseas Researchers

Piotr Morzynski, Nagoya 9.01.2018