Search of the variation in the proton-to-electron mass ratio using two vibrational transition frequencies of molecular ions

NICT M. Kajita

We propose to monitor the variation in the proton-to-electron mass ratio \(\left(\frac{m_p}{m_e} \right) \) from the two vibrational transition frequencies of molecular ions.

We consider the following vibrational transition frequencies \(f(v') \) for example: \(^{16}\text{O}_2^+ \ X^2\Pi_{1/2} (v,J)=(0,1/2)-(v',1/2) \)

\[
f(v') = f_v v' - x f_v (v' + 1)
\]

\[
Q(v') = \frac{(f(v') - f(2v')/2)/f(v')} = \frac{xf v' / f_v}{f_v}
\]

This represents the ratio between harmonic and unharmonic vibrational terms.

\(Q(v') \) proportional to \(\left(\frac{m_p}{m_e} \right)^{-1/2} \)

\(^{16}\text{O}_2^+ \ Q(4) \) measured with the uncertainty of \(1 \times 10^{-18} \)

cancel the frequency shifts satisfying

\[
\frac{\delta f(v')}{f(v')} = \frac{\delta f(2v')}{f(2v')}
\]

(relativistic effects etc.)
Precise measurement of time & frequency

important role for the development of physics beyond
standard model

Atomic transition frequencies

attained the accuracy of 10^{-18}

$^1S_0-^3P_0$ ^{87}Sr (Ohmae-san’s talk), ^{171}Yb, $^{27}\text{Al}^+$

(should be possible also with $^{115}\text{In}^+$ Ohtsubo-san’s poster)

S-F $^{171}\text{Yb}^+$ →sensitive to the variation in the finestructure constant

$(-4.1 \pm 2.5) \times 10^{-18}/\text{yr}$

But molecular transition frequencies has never been measured with the uncertainty lower than 10^{-15}
Why precise measurement of molecular transitions is useful?

We can observe phenomena, which cannot be observed with atomic transitions

1. **variation in the proton-to-electron mass ratio**

 $\text{vibration freq. } \propto (m_p/m_e)^{1/2} \quad \text{rotational freq. } \propto (m_p/m_e)^{-1}$

2. Detection of electron EDM (Abe-san's talk)
3. Symmetry violation of chiral molecules
4. Gravity in the micro size
Which molecular transition is useful for precise measurement?

vibrational transition with

\[\Delta N = \Delta J = \Delta F = \Delta M = 0 \] (only \(\nu \) changes)

(molecular shape does not change)

\[\downarrow \]

Stark, Zeeman, electric quadrupole shifts at upper and lower states are almost equal (cancelled)

Molecular figure unchanged

Parallel shift,

Molecular shift changes

Shifts are not parallel
Molecular vibrational transition frequency

\[\nu = 0 \rightarrow \nu' \]

We can select the convenient transition to prepare the probe laser

Probe laser between 1.3 – 1.5 \(\mu \text{m} \)

linewidth narrower than 10 mHz is possible using cold Si cavity

Natural linewidth of vibrational spectrum of diatomic molecules

- hetero-nuclear: several Hz
- homo-nuclear: < 1 \(\mu \text{Hz} \) (ultra-narrow laser linewidth is useful)
Why precise measurement of molecular transition is difficult?
How can we overcome with molecular ions (co-trapped with atomic ion)?

Complicated energy structure (vibrational-rotationsl states)

Laser cooling is difficult
sympathetic cooling with laser cooled atomic ions

Difficult to localize in a selected state
quantum logical one way transition (sideband transition) \(n, \) normal motion mode
repeat \(|\Phi_i, n=0> -> |\Phi_{i+1}, n=1> \) and \(|n=1> -> |n=0> \)

Difficult to monitor the state by fluorescence
quantum logical detection

<table>
<thead>
<tr>
<th>Molecular ion</th>
<th>Normal motion</th>
<th>Atomic ion</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Phi_0)</td>
<td>(n = 0 \rightarrow 1)</td>
<td>(n = 1)</td>
</tr>
<tr>
<td>(\Phi_1)</td>
<td>(n = 0 \rightarrow 1)</td>
<td>(n = 0)</td>
</tr>
</tbody>
</table>

Fluorescence: OFF

Fluorescence: ON
Molecular ion in a linear trap
(Sympathetically cooled with atomic ion)

For homonuclear molecular ion, there is no electric dipole coupling between different states in the electric ground state

\[\downarrow\]

1. No measurement perturbation by blackbody radiation
2. Stark is very small
\[^{16}\text{O}_2^+ \ X^2\Pi_{1/2}(\nu,J,M) = (0,1/2,\pm1/2) - (\nu',1/2,\pm1/2) \] transition frequency

\(\nu \): vibrational state \(J \): total angular momentum \(M \): component of \(J \) parallel to the magnetic field

Electric quadrupole shifts

Zeeman shift

strict linear with coefficients of \(3 \times 10^{-15}\) G

(much smaller than \(\text{Al}^+ \) clock, Sr and Hg lattice clocks)

Eliminated perfectly averaging \(M = \pm 1/2-\pm1/2 \)

DC Stark shift

\(-3.1 \times 10^{-20} \) / \(\text{(V/cm)}^2 \)

Blackbody radiatin shift (300 K)

\(-2.0 \times 10^{-18} \)

(same order with \(\text{Al}^+ \), much smaller than Sr and Hg lattice clocks)

One photon forbidden -> two photon absorption

\(\nu' = 4 \) light shift = \(-1.4 \times 10^{-14} \) with 1 Hz Rabi Freq. (800 W/cm\(^2\))

\(\nu' = 8 \) light shift = \(-1.2 \times 10^{-14} \) with 1 Hz Rabi Freq. (800 W/cm\(^2\))

using Hyper Ramsey, supressed to \(< 10^{-18} \)

Systematic uncertainty \(< 10^{-18} \)
Statistic uncertainty with $^{16}\text{O}_2^+$ $(\nu,J) = (0,1/2) \rightarrow (8,1/2)$

Spectrum linewidth is given by probe laser (1.41 μm) linewidth

\rightarrow narrower than 10 mHz can be attained stabilizing with cold Si cavity

Statistic uncertainty assuming

single molecular ion

linewidth of 100 mHz (Rabi freq. 0.1 Hz and light shift 1.2×10^{-15})

statistic uncertainty 6.6×10^{-19} with one day measurement

Attainable accuracy is higher than lattice clocks

Useful to monitor the variation in m_p/m_e using an atomic clock (Sr lattice?) for reference
Can we search without the atomic clock for reference?

Using atomic clock at a distant place, earth tide gives a fluctuation.
Search of the variation in m_p/m_e using $Q(v') = [f(v')-f(2v')/2]/f(v')$

$f(v') = v'f_v - v'(v' + 1)xf$

$f_v \propto (m_p/m_e)^{-1/2}$ harmonic term

$xf \propto (m_p/m_e)^{-1}$ unharmonic term

$Q(v') = [f(v') - f(2v')/2]/f(v') = xf v'/f_v \propto (m_p/m_e)^{-1/2}$

Precise measurement of $Q(v')$ is useful for search the variation in (m_p/m_e)

Current upper limit of m_p/m_e 10^{-16}/yr
Frequency shift in $Q(v')$

$$\delta Q(v') = \{f(2v')/[2f(v') - f(2v')]\} \times [\delta f(v')/f(v') - \delta f(2v')/f(2v')]$$

No shift in $Q(v')$ for the shifts with $\delta f(v')/f(v') = \delta f(2v')/f(2v')$

(1) **Quadratic Doppler shift** + **Gravity red shift** canceled perfectly

 (limit of the accuracy of Al$^+$ clock)

(2) Light shift induced by the probe laser ($\delta f_L(v')$) \propto laser power density $I_p(v')$

 the light shift is eliminated optimizing $I_p(v')/I_p(2v')$ so that $\delta f_L(v')/f(v') = \delta f_L(2v')/f(2v')$

 if the sign of the light shift is the same for $f(v')$ and $f(2v')$

 for O$_2^+$ transition, $\delta f_L(v')$ is always negative

 Hyper Ramsey is useful to eliminate the effect of the fluctuation in $I_p(v')/I_p(2v')$
Other frequency shift in $Q(v')$ with $O_2^+ \ 2\Pi_{1/2}(v, J) = (0,1/2)\rightarrow(v',1/2)$

Electric quadrupole shift: zero

Zeeman shift: perfect linear with $\pm 1.6 \times 10^{-14}/G$

(eliminated averaging $M = \pm 1/2\rightarrow\pm 1/2$)

DC Stark: $Q(1) -2.4 \times 10^{-18}/(V/cm)^2$ $Q(2) -2.5 \times 10^{-19}/(V/cm)^2$

$Q(4) 8.5 \times 10^{-21}/(V/cm)^2$ (string crystal is not definitely required)

Blackbody radiation shift (300 K): $Q(1) -1.5 \times 10^{-16}$ $Q(2) -1.6 \times 10^{-17}$

$Q(4) 5.4 \times 10^{-19}$

Accuracy of 10^{-18} is attainable

We don‘t need an atomic clock for reference
Statistical uncertainty of $O_2^+ Q(4)$

Spectrum linewidth is given by the laser linewidth (natural linewidth $< 1 \, \mu m$)

$O_2^+ \; v = 0 \rightarrow 8$ two photon absorption of $1.41 \, \mu m$ laser

(linewidth $< 10 \, \text{mHz}$ is attainable using cold Si cavity)

$v = 0 \rightarrow 4$ two photon absorption of $2.74 \, \mu m$ laser

or

two photon absorption of signal and idler waves (f_s and f_i) of optical parametric oscillator (OPO) pumped by $1.37 \, \mu m$

(pump laser is stabilized within $10 \, \text{mHz}$ using cold Si cavity)

(no effect with the fluctuation of $f_s \rightarrow f_s + \delta f$, $f_i \rightarrow f_i - \delta f$)

Statistical uncertainty with a single molecular ion with the linewidth of $100 \, \text{mHz}$

6×10^{-18} with two weeks

Measurement with multi-molecular ion is also possible
The proposed method is applicable also with other molecular ions satisfying

(1) $\Delta J = 0$ with $J = 0$ or $1/2$ \textit{(electric quadrupole shift zero)}
(2) Transition between stretched states \textit{(Zeeman shift is linear)}
(3) Sign of light shift is the same with $f(v')$ and $f(2v')$ \textit{(light shift is eliminated by optimizing the intensity ratio of two probe lasers)}

Applicable also \((v,J) = (0,0) \rightarrow (v',0)\) with CaH$^+$, SrH$^+$ etc.
Not applicable with 15N$_2^+$ \((v,N,J) = (0,0,1/2) \rightarrow (v',0,1/2)\) \textit{(sign of light shift depends on v')}
Conclusion

We propose to measure the variation in the proton-to-electron mass ratio \(\frac{m_p}{m_e} \) using two vibrational transition frequencies of molecular ion

Example: We consider \(f(v') \) with

\[
^{16}\text{O}_2^+ ~ ^2\Pi_{1/2} (v,J) = (0,1/2)-(v',1/2)
\]

electric quadrupole shift zero

Zeemaan shift eliminated perfectly

\[
Q(v') = \frac{f(v') - f(2v')/2}{f(v')} \propto \left(\frac{m_p}{m_e} \right)^{-1/2}
\]

elimination of relativistic effects

light shift induced by probe laser

supression of DC Stark shift

blackbody radiation shift

useful for the search of the variation in \(\left(\frac{m_p}{m_e} \right) \)

atomic clock for reference is not necessary
Publications

Acknowledgement
I got the support from Japan Society for the Promotion Science
Grand-in-Aid for Scientific Research (B) (Grand No. JP 17H02881)
(C) (Grand No. JP 17K06483 and 16K05500)
for Explonatory Research (Grand No. JP15K13545)