Improvement of single-ion spectroscopy of quadrupole transitions in ytterbium ions towards search for temporal variation of the fine structure constant

Yasutaka Imai

Graduate School of Electronic Science and Engineering, Kyoto University

FPUA2018@Nagoya University
Coworkers

<table>
<thead>
<tr>
<th>Role</th>
<th>Name</th>
<th>Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yb⁺:</td>
<td>Yasutaka Imai</td>
<td>S-D clock transition</td>
</tr>
<tr>
<td></td>
<td>Ren Irie</td>
<td>S-D clock transition</td>
</tr>
<tr>
<td>Ba⁺:</td>
<td>Hiroto Fujisaki</td>
<td>S-D clock transition</td>
</tr>
<tr>
<td></td>
<td>Sinya Kawada</td>
<td>Clock laser</td>
</tr>
<tr>
<td>Comb:</td>
<td>Masaya Hatake</td>
<td>Mode-locked laser</td>
</tr>
<tr>
<td>Project leader:</td>
<td>Kazuhiko Sugiyama</td>
<td></td>
</tr>
<tr>
<td>Supervisor:</td>
<td>Masao Kitano</td>
<td></td>
</tr>
</tbody>
</table>
Optical clock (frequency standard)

- Frequency stability
 \[\sigma^{-1} \propto \frac{1}{Q} = \frac{\omega_0}{\Delta \omega} \]
 \(\omega_0 \) : center frequency
 \(\Delta \omega \) : resonance width

\[\omega_0 = \begin{cases}
10^{10} \text{ Hz (microwave)} \\
10^{15} \text{ Hz (optical)}
\end{cases} \]

Higher stability

Microwave: \(10^{-16} \)
Optical: \(10^{-18} \) C.-W. Chou et al., PRL 104, 070802 (2010)

- Optical frequency measurement: frequency comb

Possible precise frequency ratio measurement between optical clocks.
Search for temporal variation of fine structure constant α

- Fine structure constant α
 - Dimensionless: no dependence on units
 - Depending on by frequency of electric transition: affect each reference frequency of optical clocks

Repeatable measurement by frequency comparison between two optical clocks with optical frequency comb

- Current limit
 - Hg$^+/\text{Al}^+$ (NIST) $(1.6 \pm 2.3) \times 10^{-17}/\text{yr}$ Rosenband et al., Science 319, 1808 (2008).
 - Yb$^+$ (PTB, NPL) $(-2.0 \pm 2.0) \times 10^{-17}/\text{yr}$ N. Huntemann et al., Phys. Rev. Lett. 113, 210802 (2014).
 $(-0.7 \pm 2.1) \times 10^{-17}/\text{yr}$ R. M. Godun et al., Phys. Rev. Lett. 113, 210801 (2014).
Characteristic of Yb$^+$

- Isotope 171($I=1/2$)
 - $m_F = 0$ - $m_F = 0$ clock transition: no 1st-order Zeeman shift
 - Simple hyperfine structure: small system with simple light source

- Clock transition
 - $^2S_{1/2} - ^2D_{5/2}$ $\lambda=411$ nm $\gamma = 22$ Hz Roberts et al., PRA 60, 2867 (1999)
 - $^2S_{1/2} - ^2D_{3/2}$ $\lambda=435$ nm $\gamma = 3$ Hz Tamm et al., PRA 80, 043403 (2009)
 - $^2S_{1/2} - ^2F_{7/2}$ $\lambda=467$ nm $\gamma < 10^{-9}$ Hz Huntemann et al., PRL 108, 090801 (2012)
Advantage of Yb\(^+\) on search for temporal variation of \(\alpha\)

- Frequency ratio measurement on three transitions in Yb\(^+\)
 - Measurement in a single same ion: exact evaluation of uncertainties
 - Ratio measurement among three
 - \(^2S_{1/2} - ^2F_{7/2}\)
 - Large sensitivity
 - \(^2S_{1/2} - ^2D_{3/2}, ^2S_{1/2} - ^2D_{5/2}\)
 - Similar sensitivities

<table>
<thead>
<tr>
<th>Ion</th>
<th>Transition</th>
<th>sensitivity A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hg</td>
<td>(^2S_{1/2} - ^2D_{5/2})</td>
<td>-3.19</td>
</tr>
<tr>
<td>Al</td>
<td>(^1S_0 - ^3P_0)</td>
<td>0.008</td>
</tr>
<tr>
<td>Yb</td>
<td>(^2S_{1/2} - ^2F_{7/2})</td>
<td>-5.20</td>
</tr>
<tr>
<td></td>
<td>(^2S_{1/2} - ^2D_{3/2})</td>
<td>0.88</td>
</tr>
<tr>
<td></td>
<td>(^2S_{1/2} - ^2D_{5/2})</td>
<td>0.88</td>
</tr>
</tbody>
</table>

- \(^2S_{1/2} - ^2F_{7/2}\) vs \(^2S_{1/2} - ^2D_{3/2}\) or \(^2S_{1/2} - ^2D_{5/2}\): Detect temporal variation of \(\alpha\)
- \(^2S_{1/2} - ^2D_{3/2}\) vs \(^2S_{1/2} - ^2D_{5/2}\): Investigate other variations

FPUA2018@Nagoya University
Progress

• $^2S_{1/2} - ^2D_{5/2}$ transition (411 nm)
 - Single-ion spectroscopy in 174Yb$^+$

• $^2S_{1/2} - ^2D_{3/2}$ transition (435 nm)
 - Single-ion spectroscopy in 171Yb$^+$

• $^2S_{1/2} - ^2F_{7/2}$ transition (467 nm)
 - Developing clock laser
Detection of the $^2S_{1/2} - ^2D_{5/2}$ clock transition

The $^2S_{1/2} - ^2D_{5/2}$ clock transition is detected by shelving

<table>
<thead>
<tr>
<th>State</th>
<th>Lifetime</th>
</tr>
</thead>
<tbody>
<tr>
<td>$^2P_{1/2}$</td>
<td>8.1 ns</td>
</tr>
<tr>
<td>$^2D_{5/2}$</td>
<td>7.2 ms</td>
</tr>
<tr>
<td>$^2F_{7/2}$</td>
<td>< 10 yr</td>
</tr>
<tr>
<td>$^1D[5/2]_{5/2}$</td>
<td>< 160 ms</td>
</tr>
</tbody>
</table>

- Lifetime of each state
- Partial term scheme of Yb$^+$
- Quantum-jump signal

Decay $^2D_{5/2}$ to $^2F_{7/2}$ state → Fluorescence disappears

FPUA2018@Nagoya University
Procedure for spectroscopy of the $^2S_{1/2} - ^2D_{5/2}$ transition

1: Laser cool a single 174Yb$^+$
2: Irradiate ion with probe laser
3: Detect shelving
 - Not shelved: repeat this cycle
 - Shelved: depopulation from the $^2F_{7/2}$ state

Clock laser
- Linewidth: ~ 500 Hz
- Frequency drift: ~ 20 kHz/h
- Power: 1 ~ 100 µW
Spectrum of the $^2S_{1/2} - ^2D_{5/2}$ transition in a single 174Yb$^+$

- Spectrum of the $^2S_{1/2}(m_j = -1/2) - ^2D_{5/2}(m_j = -5/2)$ transition

Many sidebands are observed

Identification of sidebands

FPUA2018@Nagoya University
Measurement of secular frequency

Sweep RF frequency applied to endcap by changing trap potential

RF frequency corresponds to secular frequency

\[V = V_{DC} + V_{AC} \cos \Omega t \]

Fluorescence disappears

- Dependence of secular frequency on trap RF potential \((V_{DC}=0 \text{ V})\)
- Dependence of secular frequency on trap DC potential \((V_{AC}=130 \text{ V})\)

FPUA2018@Nagoya University
Excess micromotion and nonlinear motion

Nonlinear motion: larger as an ion deviates from trap center

\[\Delta V = \frac{1}{2} V_0 C_4 \left(\frac{1}{z_0^4} \right) \left[z^4 + 3z^2r^2 + \frac{3}{8} r^4 \right] \]

Excess micromotion: larger as an ion deviates from trap center by stray electric field

Nonlinear motion is suppressed by compensation of excess micromotion
Compensation of excess micromotion

- RF-photon correlation method

1. Compensate excess micromotion with a cooling laser
2. Compensate excess micromotion with two cooling lasers irradiated from different directions each other
3. Observe displacement of a trapped ion caused by amplitude modulation of trap RF

Detect only a component of excess micromotion parallel to a cooling laser

FPUA2018@Nagoya University
Compensation by amplitude modulation of trap RF

Measure fluorescence variation caused by amplitude modulation of trap RF
Modulation index: 0.5, Modulation frequency: 200 mHz

- Fluorescence variation caused by amplitude modulation of trap RF
- Maximum fluorescence variation

Adjust so that fluorescence variation is minimum

Spectrum of the $^{2}S_{1/2} - ^{2}D_{5/2}$ transition in a single 174Yb$^{+}$

- Spectrum of the $^{2}S_{1/2} - ^{2}D_{5/2}$ transition (compensate micromotion with a cooling laser)

- Spectrum of the $^{2}S_{1/2} - ^{2}D_{5/2}$ transition (compensate micromotion with two cooling lasers)

- Spectrum of the $^{2}S_{1/2} - ^{2}D_{5/2}$ transition (all compensation methods are applied)

Nonlinear motion is suppressed
Single–ion spectroscopy of the $^2S_{1/2}(F=0)-^2D_{3/2}(F=2)$ transition

- Zeeman components of $^2S_{1/2}(F=0)-^2D_{3/2}(F=2)$ transition in single $^{171}\text{Yb}^+$

- Carrier spectrum of the $^2S_{1/2}(F=0, m_F=0)-^2D_{3/2}(F=2, m_F=0)$ clock transition

The clock frequency is feed-forward compensated by 32 Hz in 1 s intervals during measurement.

Yasutaka Imai et al., Radio Sci. 51, 1385–1395 (2016)
Summary

• Current status
 - Nonlinear motion is suppressed by optimization of micromotion

• Next tasks
 - Narrowing linewidth and improving stability of the clock lasers
 - Construction of $^{171}\text{Yb}^+$ ion clocks and evaluation of their uncertainties