Coherently amplified multi-photon emission toward neutrino mass spectroscopy

Takahiro Hiraki, for the SPAN collaboration

Research Institute for Interdisciplinary Science (RIIS)
Okayama University

10th International workshop on Fundamental Physics Using Atoms
Introduction
SPectroscopy with Atomic Neutrino

- determine unknown neutrino properties (ex. absolute masses) by using techniques of laser spectroscopy
 - Radiative Emission of Neutrino Pair (RENP)

\[
\begin{align*}
|e\rangle & \quad \gamma \quad |\bar{\nu}\rangle \\
E_{eg} & \quad |\nu\rangle
\end{align*}
\]

- threshold energy

\[
E_{th} = \frac{E_{eg}}{2} \left(\frac{(m_\nu + m_{\bar{\nu}})c^2}{2E_{eg}} \right)^2
\]

(no boost case)

- Emission rate spectra (near endpoint)

\[
\text{Emission rate (a.u.)}
\]

Y. Miyamoto et al.

Prog. Theor. Exp. Phys. 2015 081C01

\[
\begin{align*}
\text{~1 meV (~200 GHz)} & \\
Xe & \\
\text{~}m_0=80 \text{ meV} & \quad \text{~}m_0=50 \text{ meV} & \quad \text{~}m_0=10 \text{ meV}
\end{align*}
\]

\[
\begin{align*}
\text{m}_0: \text{ lightest } & \quad \nu \text{ mass}
\end{align*}
\]

\[
\begin{align*}
\text{photon energy (eV)} & \\
4.1550 & \quad 4.1555 & \quad 4.1560 & \quad 4.1565 & \quad 4.1570 & \quad 4.1575
\end{align*}
\]
Rate Amplification

- De-excitation rate of RENP: extremely small
 ➞ Rate amplification using atomic coherence

If $\Delta k = 0$ holds, the emission rate $\propto N^2$ (rate amplification)
 - momentum conservation among initial and emitted particles

study the mechanism using multi-photon emission processes
Previous experiments

✓ Two-photon emission (TPE) process using vibrational states \((v=0, J=0 \leftrightarrow v=1, J=0)\) of para-hydrogen \((pH_2)\) molecules

- 1-photon \(E_1\): forbidden, 2-photon \(E_1 \times E_1\): allowed

\(pH_2\) Energy diagram

\[|g\rangle \quad v=0 \]
\[|e\rangle \quad v=1 \]

trigger laser

signal

Coherence generation by stimulated Raman process

- 532 nm, 684 nm pulse lasers
- stimulate TPE process by a trigger laser
- injection from the same direction

Experimental setup

- 532 nm, 684 nm pulse lasers
- Filters
- 78K detector
- Trigger wavelength: 4423 nm
- Signal wavelength: 5263 nm

Rate amplification factor > \(10^{18}\)

Prog. Theor. Exp. Phys. 2014, 113C01
Current experiment:
Two-photon emission from pH_2 molecules excited by counter-propagating lasers
Coherent amplification condition

✓ Energy-momentum conservation among photons
✓ Process: Two-photon emission (TPE)

no dispersion case

• one-side excitation

• counter-propagating excitation

The condition is satisfied in both cases
Coherent amplification condition

- Energy-momentum conservation among photons+ν
- Process: Radiative emission of neutrino pair (RENP)

no dispersion case

- one-side excitation

- counter-propagating excitation

- High-quality mid-infrared (4806 nm) laser is required.
Laser setup (previous experiment)

- We previously used a mid-infrared laser as the trigger.

- We use this laser as one of the trigger laser again.
- Intensity and linewidth of this laser are not enough for the excitation laser.

Diagram

- **Ti:Sapphire**
 - 871 nm
 - continuous-wave (cw)
- **Nd:YAG**
 - 1064 nm (fundamental)
 - 10 Hz, 10 ns
- **PPLN**
 - 532 nm (SHG)
- **OPG**
- **OPA**
 - 50 mJ
- **LBO**
 - 50 mJ
 - 1367 nm
 - DFG
- **KTA**
 - 4806 nm

- MIR pulse energy: $\sim 15 \mu J/pulse$
- MIR linewidth: $\sim 1 \text{ GHz}$
- Wavelength-tunable

Poster: H. Hara
Laser setup (new)

- 871 nm continuous-wave (cw)
- 532 nm (SHG)
- 1064 nm (fundamental)
- 1367 nm
- 4806 nm

- high-power Nd:YAG laser
- adopt a cavity in the OPG section (effective injection seeder)

MIR pulse energy: ~5 mJ/pulse
MIR linewidth: ~150 MHz
MIR pulse duration: ~5 ns (FWHM)

significant improvement!
Experimental setup (1)

- use circularly polarized beam
 - excitation by the single beam is not allowed
- inject pump and trigger beams simultaneously into the para-H$_2$ target
• Signal light is generated by the trigger laser and advances in the backward direction
 - amplification condition (momentum conservation)

• Wrong-polarization component of the background scattering light is reduced by using a polarized beam splitter.
Construction of the laser system was finished last year.
Results: detuning dependence

- use the new mid-infrared laser as both pumps and trigger
 - pump energy: ~1 mJ/pulse, trigger energy: ~0.6 mJ/pulse

✓ vary the detuning δ

✓ Successfully observed a clear signal peak!

- Signal energy: ~20 nJ/pulse at $\delta=0$
Results: detuning dependence

- vary the detuning δ

Circular polarization of a pump is flipped. ➡ no signal is observed.

- confirmation of the excitation by counter-propagating lasers

![detuning curve](image)

- target pressure: 280 kPa

\[
\begin{align*}
|g\rangle & \quad \delta \\
\omega & \quad \omega \\
|e\rangle & \quad \omega \\
|g\rangle & \quad \omega \\
|\sigma^+\rangle & \quad |e\rangle \\
|\sigma^-\rangle & \quad |m_J=-1\rangle & \quad |m_J=+1\rangle \\
|\sigma^-\rangle & \quad |g\rangle \\
|\sigma^+\rangle & \quad |g\rangle \\
\end{align*}
\]
Results: detuning dependence

- vary the detuning δ

\[|g\rangle \] \rightarrow δ \rightarrow $|e\rangle$

- comparison with simulation based on Maxwell-Bloch equations
 - describe development of laser fields and coherence
- Though it is difficult to reproduce absolute signal intensity, curve shape is consistent between data and simulation.
Results: Pressure dependence

- vary the pH_2 target pressure

 detuning curve
 width (FWHM)

• Laser linewidth and pressure broadening determine the width
• Signal intensity increases as the target density larger.

✓ Consistent tendency is obtained between data and simulation.
trigger frequency dependence

- vary only the frequency of the trigger laser
- amplification condition requires $\Delta=0$

• Setup construction is finished very recently

✓ A signal peak is observed
 - obscure peak due to weaker trigger intensity

✓ Further studies (experiment/simulation) will be conducted.

<table>
<thead>
<tr>
<th>Preliminary</th>
<th>Signal strength (a.u.)</th>
<th>detuning (MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\delta=0$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Next step
Higher QED process

- study of coherent amplification of higher QED process
 - 2-photon E1×M1, 3-photon E1×E1×E1

3-photon emission

\[\begin{align*}
\gamma &\rightarrow V & \gamma &\rightarrow V & \gamma &\rightarrow V
\end{align*} \]

RENP

\[\begin{align*}
\bar{\nu} &\rightarrow V & \gamma &\rightarrow V & \gamma &\rightarrow V
\end{align*} \]

same kinematics

✓ Xe target:
 one of the candidates of the RENP experiment

- use metastable excited state
 - E1, E1×E1: forbidden
 - E1×M1, E1×E1×E1: allowed

3-photon excitation

\[\begin{align*}
|e\rangle &\rightarrow 8.315 \text{ eV} & 5p^{5}\left(2p^{6}\right)_{3/2}6s^{2}\left[3/2\right]^{0}
|g\rangle &\rightarrow 5p^{6}1S_{0}
\end{align*} \]

Poster: K. Okai
Laser setup (Xe)

876 nm continuous-wave (cw)

ECDL → TA → cw→pulse → Amp → DFG → SHG

Nd:YAG → LBO → OPG → Ti:S → LBO

532 nm (SHG)

355 nm (THG)

Nd:YAG

ECDL, LBO (OPG)

Ti:Sapphire (OPA)

POSTER: O. Sato

✓ Experiment will start soon!
Summary

para-H$_2$ experiment
• coherence generation by counter-propagating laser
• observed two-photon emission signal
• further investigation ongoing

Xe experiment
• coherent amplification of higher-order QED processes
• Laser system construction is almost finished and experiment will start soon.
Back up
Parahydrogen

Ortho-H_2

- I (nuclear spin) = 1
- $J = 1, 3, 5...$

Para-H_2

- $I = 0$
- $J = 0, 2, 4...$

\Box $J=0$ (ground state) para-H_2: completely spherical wavefunction
 - weak intermolecular interaction
 - longer decoherence time

- generate high-purity (>99.9%) para-H_2 from normal H_2
 - converter: cooled to 13.8 K, FeO(OH) as magnetic catalyst
Laser linewidth measurement

- measurement of the narrow-linewidth MIR laser
- method: absorption spectroscopy of carbonyl sulfide (OCS)
Laser linewidth

- observed absorption spectra

<table>
<thead>
<tr>
<th></th>
<th>width (FWHM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observed linewidth</td>
<td>175 (13)</td>
</tr>
<tr>
<td>Doppler width</td>
<td>99</td>
</tr>
<tr>
<td>MIR Laser linewidth</td>
<td>145 (16)</td>
</tr>
</tbody>
</table>

✓ narrow laser linewidth (~1.6 × FT-limit) is achieved.
Maxwell-Bloch equations

Development of the density matrix

\[\frac{\partial \rho_{gg}}{\partial t} = i(\Omega_{eg}\rho_{eg} - \Omega_{ge}\rho_{ge}) + \gamma_1\rho_{ee}, \]
\[\frac{\partial \rho_{ee}}{\partial t} = i(\Omega_{eg}\rho_{ge} - \Omega_{ge}\rho_{eg}) - \gamma_1\rho_{ee}, \]
\[\frac{\partial \rho_{ge}}{\partial t} = i(\Omega_{gg} - \Omega_{ee} + \delta)\rho_{ge} + i\Omega_{ge}(\rho_{ee} - \rho_{gg}) - \gamma_2\rho_{ge}. \]

\[\rho: \text{density matrix} \]
\[\Omega_{gg(ee)}: \text{two-photon Rabi frequency} \]
\[\Omega_{eg(ge)}: \text{AC Stark shift} \]
\[\gamma_1, \gamma_2: \text{relaxation rates} \]
\[\delta: \text{detuning} \]

Development of the electric fields

\[\left(\frac{\partial}{\partial t} - c \frac{\partial}{\partial z} \right) E_{p1} = \frac{i \omega_l N_t}{2} \left((\alpha_{gg}\rho_{gg} + \alpha_{ee}\rho_{ee}) E_{p1} + 2\alpha_{eg}\rho_{eg}E_{p2}^* \right), \]
\[\left(\frac{\partial}{\partial t} + c \frac{\partial}{\partial z} \right) E_{p2} = \frac{i \omega_l N_t}{2} \left((\alpha_{gg}\rho_{gg} + \alpha_{ee}\rho_{ee}) E_{p2} + 2\alpha_{eg}\rho_{eg}E_{p1}^* \right), \]
\[\left(\frac{\partial}{\partial t} - c \frac{\partial}{\partial z} \right) E_{\text{trig}} = \frac{i \omega_l N_t}{2} \left((\alpha_{gg}\rho_{gg} + \alpha_{ee}\rho_{ee}) E_{\text{trig}} + 2\alpha_{eg}\rho_{eg}E_{\text{sig}}^* \right), \]
\[\left(\frac{\partial}{\partial t} + c \frac{\partial}{\partial z} \right) E_{\text{sig}} = \frac{i \omega_l N_t}{2} \left((\alpha_{gg}\rho_{gg} + \alpha_{ee}\rho_{ee}) E_{\text{sig}} + 2\alpha_{eg}\rho_{eg}E_{\text{trig}}^* \right). \]

\[\omega_l: \text{laser frequency} \]
\[N_t: \text{target density} \]
\[\alpha: \text{polarizability} \]